MakeItFrom.com
Menu (ESC)

AISI 409 Stainless Steel vs. S42035 Stainless Steel

Both AISI 409 stainless steel and S42035 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 94% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 409 stainless steel and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 24
18
Fatigue Strength, MPa 140
260
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
77
Shear Strength, MPa 270
390
Tensile Strength: Ultimate (UTS), MPa 420
630
Tensile Strength: Yield (Proof), MPa 200
430

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 450
470
Maximum Temperature: Mechanical, °C 710
810
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
27
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
2.4
Embodied Energy, MJ/kg 28
34
Embodied Water, L/kg 94
110

Common Calculations

PREN (Pitting Resistance) 11
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
100
Resilience: Unit (Modulus of Resilience), kJ/m3 100
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
22
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 6.7
7.2
Thermal Shock Resistance, points 15
22

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 10.5 to 11.7
13.5 to 15.5
Iron (Fe), % 84.9 to 89.5
78.1 to 85
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 0 to 0.5
1.0 to 2.5
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.75
0.3 to 0.5