MakeItFrom.com
Menu (ESC)

AISI 409Cb Stainless Steel vs. EN 1.6958 Steel

Both AISI 409Cb stainless steel and EN 1.6958 steel are iron alloys. They have 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 409Cb stainless steel and the bottom bar is EN 1.6958 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
16
Fatigue Strength, MPa 140
700
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 270
700
Tensile Strength: Ultimate (UTS), MPa 420
1140
Tensile Strength: Yield (Proof), MPa 200
1070

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
450
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
47
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
5.0
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.2
2.0
Embodied Energy, MJ/kg 31
27
Embodied Water, L/kg 94
60

Common Calculations

PREN (Pitting Resistance) 11
2.9
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
180
Resilience: Unit (Modulus of Resilience), kJ/m3 100
3050
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 15
40
Strength to Weight: Bending, points 16
31
Thermal Diffusivity, mm2/s 6.7
13
Thermal Shock Resistance, points 15
39

Alloy Composition

Aluminum (Al), % 0
0.0050 to 0.050
Carbon (C), % 0 to 0.060
0.25 to 0.3
Chromium (Cr), % 10.5 to 11.7
1.2 to 1.7
Iron (Fe), % 84.9 to 89.5
92.6 to 94.5
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 0
0.35 to 0.55
Nickel (Ni), % 0 to 0.5
3.3 to 3.8
Niobium (Nb), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0.15 to 0.3
Sulfur (S), % 0 to 0.040
0 to 0.015
Vanadium (V), % 0
0 to 0.12