MakeItFrom.com
Menu (ESC)

AISI 409Cb Stainless Steel vs. EN 1.8880 Steel

Both AISI 409Cb stainless steel and EN 1.8880 steel are iron alloys. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 409Cb stainless steel and the bottom bar is EN 1.8880 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
16
Fatigue Strength, MPa 140
470
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 270
510
Tensile Strength: Ultimate (UTS), MPa 420
830
Tensile Strength: Yield (Proof), MPa 200
720

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 710
420
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
3.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.2
1.9
Embodied Energy, MJ/kg 31
26
Embodied Water, L/kg 94
54

Common Calculations

PREN (Pitting Resistance) 11
2.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
130
Resilience: Unit (Modulus of Resilience), kJ/m3 100
1370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 15
29
Strength to Weight: Bending, points 16
25
Thermal Diffusivity, mm2/s 6.7
11
Thermal Shock Resistance, points 15
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.060
0 to 0.2
Chromium (Cr), % 10.5 to 11.7
0 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 84.9 to 89.5
91.9 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0 to 0.5
0 to 2.5
Niobium (Nb), % 0 to 0.75
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15