MakeItFrom.com
Menu (ESC)

AISI 409Cb Stainless Steel vs. CC755S Brass

AISI 409Cb stainless steel belongs to the iron alloys classification, while CC755S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 409Cb stainless steel and the bottom bar is CC755S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 24
9.5
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 420
390
Tensile Strength: Yield (Proof), MPa 200
250

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 710
120
Melting Completion (Liquidus), °C 1450
820
Melting Onset (Solidus), °C 1410
780
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
27
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
30

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
23
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 2.2
2.7
Embodied Energy, MJ/kg 31
46
Embodied Water, L/kg 94
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
33
Resilience: Unit (Modulus of Resilience), kJ/m3 100
290
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 15
14
Strength to Weight: Bending, points 16
15
Thermal Diffusivity, mm2/s 6.7
38
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
59.5 to 61
Iron (Fe), % 84.9 to 89.5
0.050 to 0.2
Lead (Pb), % 0
1.2 to 1.7
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 0 to 0.5
0 to 0.2
Niobium (Nb), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
35.8 to 38.9