MakeItFrom.com
Menu (ESC)

AISI 409Cb Stainless Steel vs. Grade C-2 Titanium

AISI 409Cb stainless steel belongs to the iron alloys classification, while grade C-2 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 409Cb stainless steel and the bottom bar is grade C-2 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 24
17
Fatigue Strength, MPa 140
200
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 420
390
Tensile Strength: Yield (Proof), MPa 200
310

Thermal Properties

Latent Heat of Fusion, J/g 270
420
Maximum Temperature: Mechanical, °C 710
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 10
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.2
31
Embodied Energy, MJ/kg 31
510
Embodied Water, L/kg 94
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
61
Resilience: Unit (Modulus of Resilience), kJ/m3 100
460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 15
24
Strength to Weight: Bending, points 16
26
Thermal Diffusivity, mm2/s 6.7
8.8
Thermal Shock Resistance, points 15
30

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.1
Chromium (Cr), % 10.5 to 11.7
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 84.9 to 89.5
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0 to 0.050
Niobium (Nb), % 0 to 0.75
0
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
98.8 to 100
Residuals, % 0
0 to 0.4