MakeItFrom.com
Menu (ESC)

AISI 409Cb Stainless Steel vs. C18400 Copper

AISI 409Cb stainless steel belongs to the iron alloys classification, while C18400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 409Cb stainless steel and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 24
13 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Shear Strength, MPa 270
190 to 310
Tensile Strength: Ultimate (UTS), MPa 420
270 to 490
Tensile Strength: Yield (Proof), MPa 200
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 710
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1410
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
320
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
80
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
81

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.2
2.6
Embodied Energy, MJ/kg 31
41
Embodied Water, L/kg 94
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 100
54 to 980
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 15
8.5 to 15
Strength to Weight: Bending, points 16
10 to 16
Thermal Diffusivity, mm2/s 6.7
94
Thermal Shock Resistance, points 15
9.6 to 17

Alloy Composition

Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 10.5 to 11.7
0.4 to 1.2
Copper (Cu), % 0
97.2 to 99.6
Iron (Fe), % 84.9 to 89.5
0 to 0.15
Lithium (Li), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.5