MakeItFrom.com
Menu (ESC)

AISI 409Cb Stainless Steel vs. C62500 Bronze

AISI 409Cb stainless steel belongs to the iron alloys classification, while C62500 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 409Cb stainless steel and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 24
1.0
Fatigue Strength, MPa 140
460
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
42
Shear Strength, MPa 270
410
Tensile Strength: Ultimate (UTS), MPa 420
690
Tensile Strength: Yield (Proof), MPa 200
410

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 710
230
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1410
1050
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 25
47
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
10
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
26
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 2.2
3.3
Embodied Energy, MJ/kg 31
55
Embodied Water, L/kg 94
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 100
750
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 15
24
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 6.7
13
Thermal Shock Resistance, points 15
24

Alloy Composition

Aluminum (Al), % 0
12.5 to 13.5
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
78.5 to 84
Iron (Fe), % 84.9 to 89.5
3.5 to 5.5
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5