MakeItFrom.com
Menu (ESC)

AISI 409Cb Stainless Steel vs. C72150 Copper-nickel

AISI 409Cb stainless steel belongs to the iron alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 409Cb stainless steel and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
150
Elongation at Break, % 24
29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
55
Shear Strength, MPa 270
320
Tensile Strength: Ultimate (UTS), MPa 420
490
Tensile Strength: Yield (Proof), MPa 200
210

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
600
Melting Completion (Liquidus), °C 1450
1210
Melting Onset (Solidus), °C 1410
1250
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 25
22
Thermal Expansion, µm/m-K 10
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.2
6.1
Embodied Energy, MJ/kg 31
88
Embodied Water, L/kg 94
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
120
Resilience: Unit (Modulus of Resilience), kJ/m3 100
150
Stiffness to Weight: Axial, points 14
9.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 15
15
Strength to Weight: Bending, points 16
15
Thermal Diffusivity, mm2/s 6.7
6.0
Thermal Shock Resistance, points 15
18

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.1
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
52.5 to 57
Iron (Fe), % 84.9 to 89.5
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 0 to 0.5
43 to 46
Niobium (Nb), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5