MakeItFrom.com
Menu (ESC)

AISI 409Cb Stainless Steel vs. N10675 Nickel

AISI 409Cb stainless steel belongs to the iron alloys classification, while N10675 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 409Cb stainless steel and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 24
47
Fatigue Strength, MPa 140
350
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
85
Shear Strength, MPa 270
610
Tensile Strength: Ultimate (UTS), MPa 420
860
Tensile Strength: Yield (Proof), MPa 200
400

Thermal Properties

Latent Heat of Fusion, J/g 270
320
Maximum Temperature: Mechanical, °C 710
910
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
11
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
80
Density, g/cm3 7.8
9.3
Embodied Carbon, kg CO2/kg material 2.2
16
Embodied Energy, MJ/kg 31
210
Embodied Water, L/kg 94
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
330
Resilience: Unit (Modulus of Resilience), kJ/m3 100
350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
22
Strength to Weight: Axial, points 15
26
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 6.7
3.1
Thermal Shock Resistance, points 15
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.060
0 to 0.010
Chromium (Cr), % 10.5 to 11.7
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 84.9 to 89.5
1.0 to 3.0
Manganese (Mn), % 0 to 1.0
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0 to 0.5
51.3 to 71
Niobium (Nb), % 0 to 0.75
0 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.040
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1