MakeItFrom.com
Menu (ESC)

AISI 409Cb Stainless Steel vs. S41003 Stainless Steel

Both AISI 409Cb stainless steel and S41003 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 99% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 409Cb stainless steel and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
21
Fatigue Strength, MPa 140
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 270
320
Tensile Strength: Ultimate (UTS), MPa 420
520
Tensile Strength: Yield (Proof), MPa 200
310

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Corrosion, °C 440
390
Maximum Temperature: Mechanical, °C 710
720
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
27
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.2
1.9
Embodied Energy, MJ/kg 31
27
Embodied Water, L/kg 94
97

Common Calculations

PREN (Pitting Resistance) 11
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
92
Resilience: Unit (Modulus of Resilience), kJ/m3 100
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
19
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 6.7
7.2
Thermal Shock Resistance, points 15
19

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.030
Chromium (Cr), % 10.5 to 11.7
10.5 to 12.5
Iron (Fe), % 84.9 to 89.5
83.4 to 89.5
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 0 to 0.5
0 to 1.5
Niobium (Nb), % 0 to 0.75
0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030