MakeItFrom.com
Menu (ESC)

AISI 410 Stainless Steel vs. 356.0 Aluminum

AISI 410 stainless steel belongs to the iron alloys classification, while 356.0 aluminum belongs to the aluminum alloys. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 410 stainless steel and the bottom bar is 356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
55 to 75
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 16 to 22
2.0 to 3.8
Fatigue Strength, MPa 190 to 350
55 to 75
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 330 to 470
140 to 190
Tensile Strength: Ultimate (UTS), MPa 520 to 770
160 to 240
Tensile Strength: Yield (Proof), MPa 290 to 580
100 to 190

Thermal Properties

Latent Heat of Fusion, J/g 270
500
Maximum Temperature: Mechanical, °C 710
170
Melting Completion (Liquidus), °C 1530
620
Melting Onset (Solidus), °C 1480
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 30
150 to 170
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
40 to 43
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
140 to 150

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Calomel Potential, mV -150
-730
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 1.9
8.0
Embodied Energy, MJ/kg 27
150
Embodied Water, L/kg 100
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 110
3.2 to 8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 860
70 to 250
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 19 to 28
17 to 26
Strength to Weight: Bending, points 19 to 24
25 to 33
Thermal Diffusivity, mm2/s 8.1
64 to 71
Thermal Shock Resistance, points 18 to 26
7.6 to 11

Alloy Composition

Aluminum (Al), % 0
90.1 to 93.3
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 83.5 to 88.4
0 to 0.6
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.35
Nickel (Ni), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15