MakeItFrom.com
Menu (ESC)

AISI 410 Stainless Steel vs. EN 1.4980 Stainless Steel

Both AISI 410 stainless steel and EN 1.4980 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 410 stainless steel and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16 to 22
17
Fatigue Strength, MPa 190 to 350
410
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
75
Shear Strength, MPa 330 to 470
630
Tensile Strength: Ultimate (UTS), MPa 520 to 770
1030
Tensile Strength: Yield (Proof), MPa 290 to 580
680

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 390
780
Maximum Temperature: Mechanical, °C 710
920
Melting Completion (Liquidus), °C 1530
1430
Melting Onset (Solidus), °C 1480
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
13
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
26
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 1.9
6.0
Embodied Energy, MJ/kg 27
87
Embodied Water, L/kg 100
170

Common Calculations

PREN (Pitting Resistance) 13
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 860
1180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 28
36
Strength to Weight: Bending, points 19 to 24
28
Thermal Diffusivity, mm2/s 8.1
3.5
Thermal Shock Resistance, points 18 to 26
22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0.080 to 0.15
0.030 to 0.080
Chromium (Cr), % 11.5 to 13.5
13.5 to 16
Iron (Fe), % 83.5 to 88.4
49.2 to 58.5
Manganese (Mn), % 0 to 1.0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 0.75
24 to 27
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5