AISI 410 Stainless Steel vs. EN 1.6368 Steel
Both AISI 410 stainless steel and EN 1.6368 steel are iron alloys. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is AISI 410 stainless steel and the bottom bar is EN 1.6368 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 190 to 240 | |
200 to 210 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 16 to 22 | |
18 |
Fatigue Strength, MPa | 190 to 350 | |
310 to 330 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 76 | |
73 |
Shear Strength, MPa | 330 to 470 | |
410 to 430 |
Tensile Strength: Ultimate (UTS), MPa | 520 to 770 | |
660 to 690 |
Tensile Strength: Yield (Proof), MPa | 290 to 580 | |
460 to 490 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
250 |
Maximum Temperature: Mechanical, °C | 710 | |
410 |
Melting Completion (Liquidus), °C | 1530 | |
1460 |
Melting Onset (Solidus), °C | 1480 | |
1420 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 30 | |
40 |
Thermal Expansion, µm/m-K | 11 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.9 | |
7.5 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 3.3 | |
8.6 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 7.0 | |
3.4 |
Density, g/cm3 | 7.7 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.9 | |
1.7 |
Embodied Energy, MJ/kg | 27 | |
22 |
Embodied Water, L/kg | 100 | |
53 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 97 to 110 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 210 to 860 | |
580 to 650 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 19 to 28 | |
23 to 24 |
Strength to Weight: Bending, points | 19 to 24 | |
21 to 22 |
Thermal Diffusivity, mm2/s | 8.1 | |
11 |
Thermal Shock Resistance, points | 18 to 26 | |
20 |
Alloy Composition
Aluminum (Al), % | 0 | |
0.015 to 0.040 |
Carbon (C), % | 0.080 to 0.15 | |
0 to 0.17 |
Chromium (Cr), % | 11.5 to 13.5 | |
0 to 0.3 |
Copper (Cu), % | 0 | |
0.5 to 0.8 |
Iron (Fe), % | 83.5 to 88.4 | |
95.1 to 97.2 |
Manganese (Mn), % | 0 to 1.0 | |
0.8 to 1.2 |
Molybdenum (Mo), % | 0 | |
0.25 to 0.5 |
Nickel (Ni), % | 0 to 0.75 | |
1.0 to 1.3 |
Niobium (Nb), % | 0 | |
0.015 to 0.045 |
Nitrogen (N), % | 0 | |
0 to 0.020 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.025 |
Silicon (Si), % | 0 to 1.0 | |
0.25 to 0.5 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.010 |