MakeItFrom.com
Menu (ESC)

AISI 410 Stainless Steel vs. C89320 Bronze

AISI 410 stainless steel belongs to the iron alloys classification, while C89320 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 410 stainless steel and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 16 to 22
17
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 520 to 770
270
Tensile Strength: Yield (Proof), MPa 290 to 580
140

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 710
180
Melting Completion (Liquidus), °C 1530
1050
Melting Onset (Solidus), °C 1480
930
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 30
56
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
15
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
15

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
37
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 1.9
3.5
Embodied Energy, MJ/kg 27
56
Embodied Water, L/kg 100
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 110
38
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 860
93
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19 to 28
8.5
Strength to Weight: Bending, points 19 to 24
10
Thermal Diffusivity, mm2/s 8.1
17
Thermal Shock Resistance, points 18 to 26
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
87 to 91
Iron (Fe), % 83.5 to 88.4
0 to 0.2
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.75
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.3
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5