MakeItFrom.com
Menu (ESC)

AISI 410 Stainless Steel vs. S66286 Stainless Steel

Both AISI 410 stainless steel and S66286 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 410 stainless steel and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16 to 22
17 to 40
Fatigue Strength, MPa 190 to 350
240 to 410
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
75
Shear Strength, MPa 330 to 470
420 to 630
Tensile Strength: Ultimate (UTS), MPa 520 to 770
620 to 1020
Tensile Strength: Yield (Proof), MPa 290 to 580
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 390
780
Maximum Temperature: Mechanical, °C 710
920
Melting Completion (Liquidus), °C 1530
1430
Melting Onset (Solidus), °C 1480
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
26
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 1.9
6.0
Embodied Energy, MJ/kg 27
87
Embodied Water, L/kg 100
170

Common Calculations

PREN (Pitting Resistance) 13
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 110
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 860
190 to 1150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19 to 28
22 to 36
Strength to Weight: Bending, points 19 to 24
20 to 28
Thermal Diffusivity, mm2/s 8.1
4.0
Thermal Shock Resistance, points 18 to 26
13 to 22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0.080 to 0.15
0 to 0.080
Chromium (Cr), % 11.5 to 13.5
13.5 to 16
Iron (Fe), % 83.5 to 88.4
49.1 to 59.5
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 0.75
24 to 27
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5

Comparable Variants