MakeItFrom.com
Menu (ESC)

AISI 410Cb Stainless Steel vs. AWS E90C-B9

Both AISI 410Cb stainless steel and AWS E90C-B9 are iron alloys. They have a very high 97% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 410Cb stainless steel and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 15
18
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
75
Tensile Strength: Ultimate (UTS), MPa 550 to 960
710
Tensile Strength: Yield (Proof), MPa 310 to 790
460

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
25
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
7.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 29
37
Embodied Water, L/kg 97
91

Common Calculations

PREN (Pitting Resistance) 12
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 1600
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20 to 35
25
Strength to Weight: Bending, points 19 to 28
23
Thermal Diffusivity, mm2/s 7.3
6.9
Thermal Shock Resistance, points 20 to 35
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.18
0.080 to 0.13
Chromium (Cr), % 11 to 13
8.0 to 10.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 84.5 to 89
84.4 to 90.9
Manganese (Mn), % 0 to 1.0
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0.050 to 0.3
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5