MakeItFrom.com
Menu (ESC)

AISI 410Cb Stainless Steel vs. AWS ER80S-B6

Both AISI 410Cb stainless steel and AWS ER80S-B6 are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 410Cb stainless steel and the bottom bar is AWS ER80S-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 15
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Tensile Strength: Ultimate (UTS), MPa 550 to 960
620
Tensile Strength: Yield (Proof), MPa 310 to 790
540

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
4.7
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
1.8
Embodied Energy, MJ/kg 29
24
Embodied Water, L/kg 97
71

Common Calculations

PREN (Pitting Resistance) 12
7.1
Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 1600
750
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20 to 35
22
Strength to Weight: Bending, points 19 to 28
21
Thermal Diffusivity, mm2/s 7.3
11
Thermal Shock Resistance, points 20 to 35
18

Alloy Composition

Carbon (C), % 0 to 0.18
0 to 0.1
Chromium (Cr), % 11 to 13
4.5 to 6.0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 84.5 to 89
90.6 to 94.7
Manganese (Mn), % 0 to 1.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0.050 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025
Residuals, % 0
0 to 0.5