AISI 410Cb Stainless Steel vs. EN 1.7703 Steel
Both AISI 410Cb stainless steel and EN 1.7703 steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is AISI 410Cb stainless steel and the bottom bar is EN 1.7703 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 200 to 270 | |
200 to 210 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 15 | |
20 |
Fatigue Strength, MPa | 180 to 460 | |
320 to 340 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 76 | |
74 |
Shear Strength, MPa | 340 to 590 | |
420 to 430 |
Tensile Strength: Ultimate (UTS), MPa | 550 to 960 | |
670 to 690 |
Tensile Strength: Yield (Proof), MPa | 310 to 790 | |
460 to 500 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
250 |
Maximum Temperature: Mechanical, °C | 730 | |
460 |
Melting Completion (Liquidus), °C | 1450 | |
1470 |
Melting Onset (Solidus), °C | 1400 | |
1430 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 27 | |
39 |
Thermal Expansion, µm/m-K | 10 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.9 | |
7.6 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 3.3 | |
8.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 7.5 | |
4.2 |
Density, g/cm3 | 7.7 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 2.0 | |
2.5 |
Embodied Energy, MJ/kg | 29 | |
35 |
Embodied Water, L/kg | 97 | |
61 |
Common Calculations
PREN (Pitting Resistance) | 12 | |
5.6 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 70 to 130 | |
120 to 130 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 240 to 1600 | |
570 to 650 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 20 to 35 | |
24 |
Strength to Weight: Bending, points | 19 to 28 | |
22 |
Thermal Diffusivity, mm2/s | 7.3 | |
11 |
Thermal Shock Resistance, points | 20 to 35 | |
19 to 20 |
Alloy Composition
Carbon (C), % | 0 to 0.18 | |
0.11 to 0.15 |
Chromium (Cr), % | 11 to 13 | |
2.0 to 2.5 |
Copper (Cu), % | 0 | |
0 to 0.2 |
Iron (Fe), % | 84.5 to 89 | |
94.6 to 96.4 |
Manganese (Mn), % | 0 to 1.0 | |
0.3 to 0.6 |
Molybdenum (Mo), % | 0 | |
0.9 to 1.1 |
Nickel (Ni), % | 0 | |
0 to 0.25 |
Niobium (Nb), % | 0.050 to 0.3 | |
0 to 0.070 |
Nitrogen (N), % | 0 | |
0 to 0.012 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.015 |
Silicon (Si), % | 0 to 1.0 | |
0 to 0.1 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.0050 |
Titanium (Ti), % | 0 | |
0 to 0.030 |
Vanadium (V), % | 0 | |
0.25 to 0.35 |