MakeItFrom.com
Menu (ESC)

AISI 410Cb Stainless Steel vs. C42500 Brass

AISI 410Cb stainless steel belongs to the iron alloys classification, while C42500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 410Cb stainless steel and the bottom bar is C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 15
2.0 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 340 to 590
220 to 360
Tensile Strength: Ultimate (UTS), MPa 550 to 960
310 to 630
Tensile Strength: Yield (Proof), MPa 310 to 790
120 to 590

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 730
180
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1400
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 27
120
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
28
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
29

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
30
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 29
46
Embodied Water, L/kg 97
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 130
12 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 1600
64 to 1570
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20 to 35
9.9 to 20
Strength to Weight: Bending, points 19 to 28
12 to 19
Thermal Diffusivity, mm2/s 7.3
36
Thermal Shock Resistance, points 20 to 35
11 to 22

Alloy Composition

Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 11 to 13
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 84.5 to 89
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Niobium (Nb), % 0.050 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.1 to 11.5
Residuals, % 0
0 to 0.5