MakeItFrom.com
Menu (ESC)

AISI 410Cb Stainless Steel vs. C66100 Bronze

AISI 410Cb stainless steel belongs to the iron alloys classification, while C66100 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 410Cb stainless steel and the bottom bar is C66100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 15
8.0 to 40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 340 to 590
280 to 460
Tensile Strength: Ultimate (UTS), MPa 550 to 960
410 to 790
Tensile Strength: Yield (Proof), MPa 310 to 790
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 730
200
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1400
1000
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 27
34
Thermal Expansion, µm/m-K 10
17

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
29
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 29
42
Embodied Water, L/kg 97
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 130
53 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 1600
60 to 790
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20 to 35
13 to 25
Strength to Weight: Bending, points 19 to 28
14 to 22
Thermal Diffusivity, mm2/s 7.3
9.7
Thermal Shock Resistance, points 20 to 35
15 to 29

Alloy Composition

Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 11 to 13
0
Copper (Cu), % 0
92 to 97
Iron (Fe), % 84.5 to 89
0 to 0.25
Lead (Pb), % 0
0.2 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 1.5
Niobium (Nb), % 0.050 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
2.8 to 3.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5