MakeItFrom.com
Menu (ESC)

AISI 410Cb Stainless Steel vs. C95520 Bronze

AISI 410Cb stainless steel belongs to the iron alloys classification, while C95520 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 410Cb stainless steel and the bottom bar is C95520 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 270
280
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 15
2.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 550 to 960
970
Tensile Strength: Yield (Proof), MPa 310 to 790
530

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Maximum Temperature: Mechanical, °C 730
240
Melting Completion (Liquidus), °C 1450
1070
Melting Onset (Solidus), °C 1400
1020
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 27
40
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
29
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.0
3.6
Embodied Energy, MJ/kg 29
58
Embodied Water, L/kg 97
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 130
21
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 1600
1210
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20 to 35
33
Strength to Weight: Bending, points 19 to 28
27
Thermal Diffusivity, mm2/s 7.3
11
Thermal Shock Resistance, points 20 to 35
33

Alloy Composition

Aluminum (Al), % 0
10.5 to 11.5
Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 11 to 13
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
74.5 to 81.3
Iron (Fe), % 84.5 to 89
4.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 0
4.2 to 6.0
Niobium (Nb), % 0.050 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5