MakeItFrom.com
Menu (ESC)

AISI 410S Stainless Steel vs. EN 1.4600 Stainless Steel

Both AISI 410S stainless steel and EN 1.4600 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 410S stainless steel and the bottom bar is EN 1.4600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
23
Fatigue Strength, MPa 180
290
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 310
360
Tensile Strength: Ultimate (UTS), MPa 480
580
Tensile Strength: Yield (Proof), MPa 250
430

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Corrosion, °C 390
420
Maximum Temperature: Mechanical, °C 740
730
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
27
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
7.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 1.9
2.0
Embodied Energy, MJ/kg 27
28
Embodied Water, L/kg 100
100

Common Calculations

PREN (Pitting Resistance) 13
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
470
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 8.1
7.3
Thermal Shock Resistance, points 17
21

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 11.5 to 13.5
11 to 13
Iron (Fe), % 83.8 to 88.5
82 to 87.7
Manganese (Mn), % 0 to 1.0
1.0 to 2.5
Nickel (Ni), % 0 to 0.6
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0 to 0.35