MakeItFrom.com
Menu (ESC)

AISI 410S Stainless Steel vs. EN 1.7378 Steel

Both AISI 410S stainless steel and EN 1.7378 steel are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 410S stainless steel and the bottom bar is EN 1.7378 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
17
Fatigue Strength, MPa 180
330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Shear Strength, MPa 310
430
Tensile Strength: Ultimate (UTS), MPa 480
700
Tensile Strength: Yield (Proof), MPa 250
490

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 740
460
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
4.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.9
2.3
Embodied Energy, MJ/kg 27
33
Embodied Water, L/kg 100
61

Common Calculations

PREN (Pitting Resistance) 13
5.8
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
25
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 8.1
10
Thermal Shock Resistance, points 17
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0 to 0.080
0.050 to 0.1
Chromium (Cr), % 11.5 to 13.5
2.2 to 2.6
Iron (Fe), % 83.8 to 88.5
94.6 to 96.1
Manganese (Mn), % 0 to 1.0
0.3 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.6
0
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0.15 to 0.45
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0.050 to 0.1
Vanadium (V), % 0
0.2 to 0.3