MakeItFrom.com
Menu (ESC)

AISI 410S Stainless Steel vs. EN 1.8874 Steel

Both AISI 410S stainless steel and EN 1.8874 steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 410S stainless steel and the bottom bar is EN 1.8874 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
19
Fatigue Strength, MPa 180
340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 310
410
Tensile Strength: Ultimate (UTS), MPa 480
660
Tensile Strength: Yield (Proof), MPa 250
500

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 740
420
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
3.2
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 1.9
1.8
Embodied Energy, MJ/kg 27
24
Embodied Water, L/kg 100
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
23
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 8.1
10
Thermal Shock Resistance, points 17
19

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.080
0 to 0.18
Chromium (Cr), % 11.5 to 13.5
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 83.8 to 88.5
93.6 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0 to 0.6
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.15