MakeItFrom.com
Menu (ESC)

AISI 410S Stainless Steel vs. C67000 Bronze

AISI 410S stainless steel belongs to the iron alloys classification, while C67000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 410S stainless steel and the bottom bar is C67000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
5.6 to 11
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
42
Shear Strength, MPa 310
390 to 510
Tensile Strength: Ultimate (UTS), MPa 480
660 to 880
Tensile Strength: Yield (Proof), MPa 250
350 to 540

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 740
160
Melting Completion (Liquidus), °C 1440
900
Melting Onset (Solidus), °C 1400
850
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 30
99
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
22
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
25

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 1.9
2.9
Embodied Energy, MJ/kg 27
49
Embodied Water, L/kg 100
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
43 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 170
560 to 1290
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 17
23 to 31
Strength to Weight: Bending, points 18
21 to 26
Thermal Diffusivity, mm2/s 8.1
30
Thermal Shock Resistance, points 17
21 to 29

Alloy Composition

Aluminum (Al), % 0
3.0 to 6.0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
63 to 68
Iron (Fe), % 83.8 to 88.5
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
2.5 to 5.0
Nickel (Ni), % 0 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
21.8 to 32.5
Residuals, % 0
0 to 0.5