MakeItFrom.com
Menu (ESC)

AISI 414 Stainless Steel vs. 6013 Aluminum

AISI 414 stainless steel belongs to the iron alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 414 stainless steel and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 17
3.4 to 22
Fatigue Strength, MPa 430 to 480
98 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 550 to 590
190 to 240
Tensile Strength: Ultimate (UTS), MPa 900 to 960
310 to 410
Tensile Strength: Yield (Proof), MPa 700 to 790
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 750
160
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1400
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 25
150
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 2.1
8.3
Embodied Energy, MJ/kg 29
150
Embodied Water, L/kg 100
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 1260 to 1590
200 to 900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 32 to 34
31 to 41
Strength to Weight: Bending, points 27 to 28
37 to 44
Thermal Diffusivity, mm2/s 6.7
60
Thermal Shock Resistance, points 33 to 35
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.8 to 97.8
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0 to 0.1
Copper (Cu), % 0
0.6 to 1.1
Iron (Fe), % 81.8 to 87.3
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
0.2 to 0.8
Nickel (Ni), % 1.3 to 2.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.6 to 1.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15