MakeItFrom.com
Menu (ESC)

AISI 414 Stainless Steel vs. C86200 Bronze

AISI 414 stainless steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 414 stainless steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
21
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 900 to 960
710
Tensile Strength: Yield (Proof), MPa 700 to 790
350

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 750
160
Melting Completion (Liquidus), °C 1440
940
Melting Onset (Solidus), °C 1400
900
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 25
35
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.1
2.9
Embodied Energy, MJ/kg 29
49
Embodied Water, L/kg 100
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1260 to 1590
540
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 32 to 34
25
Strength to Weight: Bending, points 27 to 28
22
Thermal Diffusivity, mm2/s 6.7
11
Thermal Shock Resistance, points 33 to 35
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 81.8 to 87.3
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
2.5 to 5.0
Nickel (Ni), % 1.3 to 2.5
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0