MakeItFrom.com
Menu (ESC)

AISI 415 Stainless Steel vs. EN 1.0108 Steel

Both AISI 415 stainless steel and EN 1.0108 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 415 stainless steel and the bottom bar is EN 1.0108 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
110
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
29
Fatigue Strength, MPa 430
150
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 550
250
Tensile Strength: Ultimate (UTS), MPa 900
380
Tensile Strength: Yield (Proof), MPa 700
200

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 780
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 24
50
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.1
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.5
1.5
Embodied Energy, MJ/kg 35
19
Embodied Water, L/kg 110
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
94
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32
13
Strength to Weight: Bending, points 26
15
Thermal Diffusivity, mm2/s 6.4
13
Thermal Shock Resistance, points 33
12

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.2
Carbon (C), % 0 to 0.050
0 to 0.13
Chromium (Cr), % 11.5 to 14
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 77.8 to 84
97.5 to 99.98
Manganese (Mn), % 0.5 to 1.0
0 to 0.7
Molybdenum (Mo), % 0.5 to 1.0
0 to 0.080
Nickel (Ni), % 3.5 to 5.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020