MakeItFrom.com
Menu (ESC)

AISI 415 Stainless Steel vs. EN 1.4116 Stainless Steel

Both AISI 415 stainless steel and EN 1.4116 stainless steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 415 stainless steel and the bottom bar is EN 1.4116 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
240
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
14
Fatigue Strength, MPa 430
240
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 550
450
Tensile Strength: Ultimate (UTS), MPa 900
750
Tensile Strength: Yield (Proof), MPa 700
430

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 390
390
Maximum Temperature: Mechanical, °C 780
800
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 24
30
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
8.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.5
2.5
Embodied Energy, MJ/kg 35
36
Embodied Water, L/kg 110
110

Common Calculations

PREN (Pitting Resistance) 15
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
87
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
470
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32
27
Strength to Weight: Bending, points 26
24
Thermal Diffusivity, mm2/s 6.4
8.1
Thermal Shock Resistance, points 33
26

Alloy Composition

Carbon (C), % 0 to 0.050
0.45 to 0.55
Chromium (Cr), % 11.5 to 14
14 to 15
Iron (Fe), % 77.8 to 84
81.3 to 85
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.5 to 1.0
0.5 to 0.8
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0
0.1 to 0.2