MakeItFrom.com
Menu (ESC)

AISI 415 Stainless Steel vs. SAE-AISI 8660 Steel

Both AISI 415 stainless steel and SAE-AISI 8660 steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 415 stainless steel and the bottom bar is SAE-AISI 8660 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
12
Fatigue Strength, MPa 430
340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 550
390
Tensile Strength: Ultimate (UTS), MPa 900
660
Tensile Strength: Yield (Proof), MPa 700
550

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 780
410
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 24
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.5
Embodied Energy, MJ/kg 35
20
Embodied Water, L/kg 110
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
73
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
800
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32
23
Strength to Weight: Bending, points 26
21
Thermal Diffusivity, mm2/s 6.4
10
Thermal Shock Resistance, points 33
19

Alloy Composition

Carbon (C), % 0 to 0.050
0.56 to 0.64
Chromium (Cr), % 11.5 to 14
0.4 to 0.6
Iron (Fe), % 77.8 to 84
96.4 to 97.6
Manganese (Mn), % 0.5 to 1.0
0.75 to 1.0
Molybdenum (Mo), % 0.5 to 1.0
0.15 to 0.25
Nickel (Ni), % 3.5 to 5.5
0.4 to 0.7
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.6
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.040