MakeItFrom.com
Menu (ESC)

AISI 415 Stainless Steel vs. C38000 Brass

AISI 415 stainless steel belongs to the iron alloys classification, while C38000 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 415 stainless steel and the bottom bar is C38000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 17
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
39
Shear Strength, MPa 550
230
Tensile Strength: Ultimate (UTS), MPa 900
380
Tensile Strength: Yield (Proof), MPa 700
120

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 780
110
Melting Completion (Liquidus), °C 1450
800
Melting Onset (Solidus), °C 1400
760
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 24
110
Thermal Expansion, µm/m-K 10
21

Otherwise Unclassified Properties

Base Metal Price, % relative 11
22
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.5
2.7
Embodied Energy, MJ/kg 35
46
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
50
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
74
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32
13
Strength to Weight: Bending, points 26
14
Thermal Diffusivity, mm2/s 6.4
37
Thermal Shock Resistance, points 33
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 77.8 to 84
0 to 0.35
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
35.9 to 43.5
Residuals, % 0
0 to 0.5