MakeItFrom.com
Menu (ESC)

AISI 415 Stainless Steel vs. C87500 Brass

AISI 415 stainless steel belongs to the iron alloys classification, while C87500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 415 stainless steel and the bottom bar is C87500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
18
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 900
460
Tensile Strength: Yield (Proof), MPa 700
190

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 780
170
Melting Completion (Liquidus), °C 1450
920
Melting Onset (Solidus), °C 1400
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 24
28
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
27
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.5
2.7
Embodied Energy, MJ/kg 35
44
Embodied Water, L/kg 110
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
67
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
160
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32
16
Strength to Weight: Bending, points 26
16
Thermal Diffusivity, mm2/s 6.4
8.3
Thermal Shock Resistance, points 33
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
79 to 85
Iron (Fe), % 77.8 to 84
0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
3.0 to 5.0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5