MakeItFrom.com
Menu (ESC)

AISI 418 Stainless Steel vs. EN 1.0225 Steel

Both AISI 418 stainless steel and EN 1.0225 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 418 stainless steel and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
6.7 to 24
Fatigue Strength, MPa 520
170 to 220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 680
280 to 290
Tensile Strength: Ultimate (UTS), MPa 1100
440 to 500
Tensile Strength: Yield (Proof), MPa 850
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 770
400
Melting Completion (Liquidus), °C 1500
1460
Melting Onset (Solidus), °C 1460
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 25
52
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 15
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 41
18
Embodied Water, L/kg 110
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
140 to 390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 38
16 to 18
Strength to Weight: Bending, points 29
16 to 18
Thermal Diffusivity, mm2/s 6.7
14
Thermal Shock Resistance, points 40
14 to 16

Alloy Composition

Carbon (C), % 0.15 to 0.2
0 to 0.21
Chromium (Cr), % 12 to 14
0
Iron (Fe), % 78.5 to 83.6
98 to 100
Manganese (Mn), % 0 to 0.5
0 to 1.4
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 1.8 to 2.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.045
Tungsten (W), % 2.5 to 3.5
0