MakeItFrom.com
Menu (ESC)

AISI 418 Stainless Steel vs. EN 1.7233 Steel

Both AISI 418 stainless steel and EN 1.7233 steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 418 stainless steel and the bottom bar is EN 1.7233 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
210 to 290
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
18 to 23
Fatigue Strength, MPa 520
270 to 530
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 680
450 to 590
Tensile Strength: Ultimate (UTS), MPa 1100
700 to 960
Tensile Strength: Yield (Proof), MPa 850
380 to 780

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 770
430
Melting Completion (Liquidus), °C 1500
1460
Melting Onset (Solidus), °C 1460
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 25
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 15
3.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.6
Embodied Energy, MJ/kg 41
21
Embodied Water, L/kg 110
53

Common Calculations

PREN (Pitting Resistance) 19
3.3
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
110 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
380 to 1630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 38
25 to 34
Strength to Weight: Bending, points 29
22 to 28
Thermal Diffusivity, mm2/s 6.7
11
Thermal Shock Resistance, points 40
21 to 28

Alloy Composition

Carbon (C), % 0.15 to 0.2
0.39 to 0.45
Chromium (Cr), % 12 to 14
1.2 to 1.5
Iron (Fe), % 78.5 to 83.6
96.2 to 97.5
Manganese (Mn), % 0 to 0.5
0.4 to 0.7
Molybdenum (Mo), % 0 to 0.5
0.5 to 0.7
Nickel (Ni), % 1.8 to 2.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035
Tungsten (W), % 2.5 to 3.5
0