MakeItFrom.com
Menu (ESC)

AISI 418 Stainless Steel vs. EN 1.7338 Steel

Both AISI 418 stainless steel and EN 1.7338 steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 418 stainless steel and the bottom bar is EN 1.7338 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
150
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
23
Fatigue Strength, MPa 520
220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 680
310
Tensile Strength: Ultimate (UTS), MPa 1100
490
Tensile Strength: Yield (Proof), MPa 850
300

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 770
430
Melting Completion (Liquidus), °C 1500
1460
Melting Onset (Solidus), °C 1460
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 25
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 15
3.1
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.6
Embodied Energy, MJ/kg 41
21
Embodied Water, L/kg 110
53

Common Calculations

PREN (Pitting Resistance) 19
3.1
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
97
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 38
17
Strength to Weight: Bending, points 29
18
Thermal Diffusivity, mm2/s 6.7
11
Thermal Shock Resistance, points 40
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0.15 to 0.2
0 to 0.15
Chromium (Cr), % 12 to 14
1.0 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 78.5 to 83.6
95.4 to 97.8
Manganese (Mn), % 0 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.5
0.45 to 0.65
Nickel (Ni), % 1.8 to 2.2
0 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.5
0.5 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.010
Tungsten (W), % 2.5 to 3.5
0