MakeItFrom.com
Menu (ESC)

AISI 418 Stainless Steel vs. Nickel 825

AISI 418 stainless steel belongs to the iron alloys classification, while nickel 825 belongs to the nickel alloys. They have 46% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 418 stainless steel and the bottom bar is nickel 825.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
34
Fatigue Strength, MPa 520
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 680
430
Tensile Strength: Ultimate (UTS), MPa 1100
650
Tensile Strength: Yield (Proof), MPa 850
260

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 770
980
Melting Completion (Liquidus), °C 1500
1400
Melting Onset (Solidus), °C 1460
1370
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 25
11
Thermal Expansion, µm/m-K 10
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 15
41
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.9
7.2
Embodied Energy, MJ/kg 41
100
Embodied Water, L/kg 110
230

Common Calculations

PREN (Pitting Resistance) 19
31
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
170
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 29
20
Thermal Diffusivity, mm2/s 6.7
2.9
Thermal Shock Resistance, points 40
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Carbon (C), % 0.15 to 0.2
0 to 0.050
Chromium (Cr), % 12 to 14
19.5 to 23.5
Copper (Cu), % 0
1.5 to 3.0
Iron (Fe), % 78.5 to 83.6
22 to 37.9
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
2.5 to 3.5
Nickel (Ni), % 1.8 to 2.2
38 to 46
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0 to 0.050
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.6 to 1.2
Tungsten (W), % 2.5 to 3.5
0