MakeItFrom.com
Menu (ESC)

AISI 418 Stainless Steel vs. C27200 Brass

AISI 418 stainless steel belongs to the iron alloys classification, while C27200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 418 stainless steel and the bottom bar is C27200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
10 to 50
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 680
230 to 320
Tensile Strength: Ultimate (UTS), MPa 1100
370 to 590
Tensile Strength: Yield (Proof), MPa 850
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 770
130
Melting Completion (Liquidus), °C 1500
920
Melting Onset (Solidus), °C 1460
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
28
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
31

Otherwise Unclassified Properties

Base Metal Price, % relative 15
24
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 41
45
Embodied Water, L/kg 110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
30 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
110 to 810
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 38
13 to 20
Strength to Weight: Bending, points 29
14 to 19
Thermal Diffusivity, mm2/s 6.7
37
Thermal Shock Resistance, points 40
12 to 20

Alloy Composition

Carbon (C), % 0.15 to 0.2
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 78.5 to 83.6
0 to 0.070
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 1.8 to 2.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 2.5 to 3.5
0
Zinc (Zn), % 0
34.6 to 38
Residuals, % 0
0 to 0.3