MakeItFrom.com
Menu (ESC)

AISI 418 Stainless Steel vs. C90800 Bronze

AISI 418 stainless steel belongs to the iron alloys classification, while C90800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 418 stainless steel and the bottom bar is C90800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
90
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 1100
330
Tensile Strength: Yield (Proof), MPa 850
170

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 770
170
Melting Completion (Liquidus), °C 1500
990
Melting Onset (Solidus), °C 1460
870
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 25
68
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
11

Otherwise Unclassified Properties

Base Metal Price, % relative 15
36
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 2.9
3.8
Embodied Energy, MJ/kg 41
62
Embodied Water, L/kg 110
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
35
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
140
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 38
11
Strength to Weight: Bending, points 29
12
Thermal Diffusivity, mm2/s 6.7
21
Thermal Shock Resistance, points 40
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.15 to 0.2
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
85.3 to 89
Iron (Fe), % 78.5 to 83.6
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 1.8 to 2.2
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.3
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
11 to 13
Tungsten (W), % 2.5 to 3.5
0
Zinc (Zn), % 0
0 to 0.25