MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. EN 1.4901 Stainless Steel

Both AISI 420 stainless steel and EN 1.4901 stainless steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is EN 1.4901 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 8.0 to 15
19
Fatigue Strength, MPa 220 to 670
310
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 420 to 1010
460
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
740
Tensile Strength: Yield (Proof), MPa 380 to 1310
490

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Corrosion, °C 390
380
Maximum Temperature: Mechanical, °C 620
650
Melting Completion (Liquidus), °C 1510
1490
Melting Onset (Solidus), °C 1450
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
26
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
11
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 28
40
Embodied Water, L/kg 100
89

Common Calculations

PREN (Pitting Resistance) 14
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
620
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25 to 62
26
Strength to Weight: Bending, points 22 to 41
23
Thermal Diffusivity, mm2/s 7.3
6.9
Thermal Shock Resistance, points 25 to 62
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0.15 to 0.4
0.070 to 0.13
Chromium (Cr), % 12 to 14
8.5 to 9.5
Iron (Fe), % 82.3 to 87.9
85.8 to 89.1
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.5
0.3 to 0.6
Nickel (Ni), % 0 to 0.75
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010