MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. EN 1.8503 Steel

Both AISI 420 stainless steel and EN 1.8503 steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is EN 1.8503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
300
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 8.0 to 15
16
Fatigue Strength, MPa 220 to 670
600
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 420 to 1010
610
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
1000
Tensile Strength: Yield (Proof), MPa 380 to 1310
910

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 620
440
Melting Completion (Liquidus), °C 1510
1470
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
41
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
3.3
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
2.3
Embodied Energy, MJ/kg 28
33
Embodied Water, L/kg 100
57

Common Calculations

PREN (Pitting Resistance) 14
3.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
150
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
2200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25 to 62
35
Strength to Weight: Bending, points 22 to 41
28
Thermal Diffusivity, mm2/s 7.3
11
Thermal Shock Resistance, points 25 to 62
29

Alloy Composition

Aluminum (Al), % 0
0 to 0.3
Carbon (C), % 0.15 to 0.4
0.16 to 0.24
Chromium (Cr), % 12 to 14
1.2 to 1.5
Iron (Fe), % 82.3 to 87.9
95.8 to 97.5
Manganese (Mn), % 0 to 1.0
0.4 to 0.8
Molybdenum (Mo), % 0 to 0.5
0.65 to 0.8
Nickel (Ni), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035
Vanadium (V), % 0
0.25 to 0.35