MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. EN 2.4878 Nickel

AISI 420 stainless steel belongs to the iron alloys classification, while EN 2.4878 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is EN 2.4878 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 8.0 to 15
13 to 17
Fatigue Strength, MPa 220 to 670
400 to 410
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
78
Shear Strength, MPa 420 to 1010
750 to 760
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
1210 to 1250
Tensile Strength: Yield (Proof), MPa 380 to 1310
740 to 780

Thermal Properties

Latent Heat of Fusion, J/g 280
330
Maximum Temperature: Mechanical, °C 620
1030
Melting Completion (Liquidus), °C 1510
1370
Melting Onset (Solidus), °C 1450
1320
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 27
11
Thermal Expansion, µm/m-K 10
12

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
80
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.0
10
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
150 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
1370 to 1540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25 to 62
41 to 42
Strength to Weight: Bending, points 22 to 41
31
Thermal Diffusivity, mm2/s 7.3
2.8
Thermal Shock Resistance, points 25 to 62
37 to 39

Alloy Composition

Aluminum (Al), % 0
1.2 to 1.6
Boron (B), % 0
0.010 to 0.015
Carbon (C), % 0.15 to 0.4
0.030 to 0.070
Chromium (Cr), % 12 to 14
23 to 25
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 82.3 to 87.9
0 to 1.0
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
1.0 to 2.0
Nickel (Ni), % 0 to 0.75
43.6 to 52.2
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0070
Tantalum (Ta), % 0
0 to 0.050
Titanium (Ti), % 0
2.8 to 3.2
Zirconium (Zr), % 0
0.030 to 0.070

Comparable Variants