MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. EN AC-45000 Aluminum

AISI 420 stainless steel belongs to the iron alloys classification, while EN AC-45000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is EN AC-45000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
77
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 8.0 to 15
1.1
Fatigue Strength, MPa 220 to 670
75
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
180
Tensile Strength: Yield (Proof), MPa 380 to 1310
110

Thermal Properties

Latent Heat of Fusion, J/g 280
470
Maximum Temperature: Mechanical, °C 620
180
Melting Completion (Liquidus), °C 1510
640
Melting Onset (Solidus), °C 1450
520
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 27
120
Thermal Expansion, µm/m-K 10
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
27
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
81

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.0
7.7
Embodied Energy, MJ/kg 28
140
Embodied Water, L/kg 100
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
80
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 25 to 62
17
Strength to Weight: Bending, points 22 to 41
24
Thermal Diffusivity, mm2/s 7.3
47
Thermal Shock Resistance, points 25 to 62
8.0

Alloy Composition

Aluminum (Al), % 0
82.2 to 91.8
Carbon (C), % 0.15 to 0.4
0
Chromium (Cr), % 12 to 14
0 to 0.15
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 82.3 to 87.9
0 to 1.0
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0
0 to 0.55
Manganese (Mn), % 0 to 1.0
0.2 to 0.65
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.75
0 to 0.45
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
5.0 to 7.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0
0 to 0.35