MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. CC496K Bronze

AISI 420 stainless steel belongs to the iron alloys classification, while CC496K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
72
Elastic (Young's, Tensile) Modulus, GPa 190
97
Elongation at Break, % 8.0 to 15
8.6
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 76
36
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
210
Tensile Strength: Yield (Proof), MPa 380 to 1310
99

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 620
140
Melting Completion (Liquidus), °C 1510
900
Melting Onset (Solidus), °C 1450
820
Specific Heat Capacity, J/kg-K 480
340
Thermal Conductivity, W/m-K 27
52
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
11

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
31
Density, g/cm3 7.7
9.2
Embodied Carbon, kg CO2/kg material 2.0
3.3
Embodied Energy, MJ/kg 28
52
Embodied Water, L/kg 100
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
15
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
50
Stiffness to Weight: Axial, points 14
5.9
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 25 to 62
6.5
Strength to Weight: Bending, points 22 to 41
8.6
Thermal Diffusivity, mm2/s 7.3
17
Thermal Shock Resistance, points 25 to 62
8.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.15 to 0.4
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
72 to 79.5
Iron (Fe), % 82.3 to 87.9
0 to 0.25
Lead (Pb), % 0
13 to 17
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.75
0.5 to 2.0
Phosphorus (P), % 0 to 0.040
0 to 0.1
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.030
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 2.0