MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. C10500 Copper

AISI 420 stainless steel belongs to the iron alloys classification, while C10500 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is C10500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 8.0 to 15
2.8 to 51
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 84
10 to 62
Shear Modulus, GPa 76
43
Shear Strength, MPa 420 to 1010
150 to 210
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
220 to 400
Tensile Strength: Yield (Proof), MPa 380 to 1310
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 620
200
Melting Completion (Liquidus), °C 1510
1080
Melting Onset (Solidus), °C 1450
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 27
390
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
100
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
32
Density, g/cm3 7.7
9.0
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 28
42
Embodied Water, L/kg 100
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
24 to 680
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25 to 62
6.8 to 12
Strength to Weight: Bending, points 22 to 41
9.1 to 14
Thermal Diffusivity, mm2/s 7.3
110
Thermal Shock Resistance, points 25 to 62
7.8 to 14

Alloy Composition

Carbon (C), % 0.15 to 0.4
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
99.89 to 99.966
Iron (Fe), % 82.3 to 87.9
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.75
0
Oxygen (O), % 0
0 to 0.0010
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.050