MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. C69400 Brass

AISI 420 stainless steel belongs to the iron alloys classification, while C69400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 8.0 to 15
17
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 420 to 1010
350
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
570
Tensile Strength: Yield (Proof), MPa 380 to 1310
270

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 620
170
Melting Completion (Liquidus), °C 1510
920
Melting Onset (Solidus), °C 1450
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 27
26
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
44
Embodied Water, L/kg 100
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
80
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
340
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25 to 62
19
Strength to Weight: Bending, points 22 to 41
18
Thermal Diffusivity, mm2/s 7.3
7.7
Thermal Shock Resistance, points 25 to 62
20

Alloy Composition

Carbon (C), % 0.15 to 0.4
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
80 to 83
Iron (Fe), % 82.3 to 87.9
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
3.5 to 4.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
11.5 to 16.5
Residuals, % 0
0 to 0.5