MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. C69710 Brass

AISI 420 stainless steel belongs to the iron alloys classification, while C69710 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is C69710 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 8.0 to 15
25
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Shear Strength, MPa 420 to 1010
300
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
470
Tensile Strength: Yield (Proof), MPa 380 to 1310
230

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 620
160
Melting Completion (Liquidus), °C 1510
930
Melting Onset (Solidus), °C 1450
880
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 27
40
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
26
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
44
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
99
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
250
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25 to 62
16
Strength to Weight: Bending, points 22 to 41
16
Thermal Diffusivity, mm2/s 7.3
12
Thermal Shock Resistance, points 25 to 62
16

Alloy Composition

Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0.15 to 0.4
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
75 to 80
Iron (Fe), % 82.3 to 87.9
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 0.4
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
2.5 to 3.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
13.8 to 22
Residuals, % 0
0 to 0.5