MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. C87900 Brass

AISI 420 stainless steel belongs to the iron alloys classification, while C87900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 8.0 to 15
25
Poisson's Ratio 0.28
0.31
Rockwell B Hardness 84
70
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
480
Tensile Strength: Yield (Proof), MPa 380 to 1310
240

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 620
130
Melting Completion (Liquidus), °C 1510
930
Melting Onset (Solidus), °C 1450
900
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 27
120
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
15
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
17

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
24
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
46
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
270
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25 to 62
17
Strength to Weight: Bending, points 22 to 41
17
Thermal Diffusivity, mm2/s 7.3
37
Thermal Shock Resistance, points 25 to 62
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0.15 to 0.4
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
63 to 69.2
Iron (Fe), % 82.3 to 87.9
0 to 0.4
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.75
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0.8 to 1.2
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
30 to 36