MakeItFrom.com
Menu (ESC)

AISI 420 Stainless Steel vs. C90900 Bronze

AISI 420 stainless steel belongs to the iron alloys classification, while C90900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 420 stainless steel and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
90
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 8.0 to 15
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 690 to 1720
280
Tensile Strength: Yield (Proof), MPa 380 to 1310
140

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 620
160
Melting Completion (Liquidus), °C 1510
980
Melting Onset (Solidus), °C 1450
820
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 27
65
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
11

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
36
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.0
3.9
Embodied Energy, MJ/kg 28
64
Embodied Water, L/kg 100
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 130
35
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 4410
89
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25 to 62
8.8
Strength to Weight: Bending, points 22 to 41
11
Thermal Diffusivity, mm2/s 7.3
21
Thermal Shock Resistance, points 25 to 62
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.15 to 0.4
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 82.3 to 87.9
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.75
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
12 to 14
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6