MakeItFrom.com
Menu (ESC)

AISI 422 Stainless Steel vs. AISI 430F Stainless Steel

Both AISI 422 stainless steel and AISI 430F stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 422 stainless steel and the bottom bar is AISI 430F stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260 to 330
230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 15 to 17
23
Fatigue Strength, MPa 410 to 500
210
Poisson's Ratio 0.28
0.28
Reduction in Area, % 34 to 40
50
Shear Modulus, GPa 76
77
Shear Strength, MPa 560 to 660
340
Tensile Strength: Ultimate (UTS), MPa 910 to 1080
540
Tensile Strength: Yield (Proof), MPa 670 to 870
310

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 380
410
Maximum Temperature: Mechanical, °C 650
870
Melting Completion (Liquidus), °C 1480
1430
Melting Onset (Solidus), °C 1470
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 24
25
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.7
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
8.5
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.1
Embodied Energy, MJ/kg 44
29
Embodied Water, L/kg 100
120

Common Calculations

PREN (Pitting Resistance) 17
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1140 to 1910
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 38
20
Strength to Weight: Bending, points 26 to 30
19
Thermal Diffusivity, mm2/s 6.4
6.7
Thermal Shock Resistance, points 33 to 39
19

Alloy Composition

Carbon (C), % 0.2 to 0.25
0 to 0.12
Chromium (Cr), % 11 to 12.5
16 to 18
Iron (Fe), % 81.9 to 85.8
79.2 to 83.9
Manganese (Mn), % 0.5 to 1.0
0 to 1.3
Molybdenum (Mo), % 0.9 to 1.3
0
Nickel (Ni), % 0.5 to 1.0
0
Phosphorus (P), % 0 to 0.025
0 to 0.060
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0.15 to 0.35
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
0