MakeItFrom.com
Menu (ESC)

AISI 422 Stainless Steel vs. EN 1.0566 Steel

Both AISI 422 stainless steel and EN 1.0566 steel are iron alloys. They have 85% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 422 stainless steel and the bottom bar is EN 1.0566 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260 to 330
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 15 to 17
24
Fatigue Strength, MPa 410 to 500
270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 560 to 660
350
Tensile Strength: Ultimate (UTS), MPa 910 to 1080
550
Tensile Strength: Yield (Proof), MPa 670 to 870
370

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 650
400
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1470
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
50
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.7
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.3
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.6
Embodied Energy, MJ/kg 44
22
Embodied Water, L/kg 100
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1140 to 1910
360
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32 to 38
19
Strength to Weight: Bending, points 26 to 30
19
Thermal Diffusivity, mm2/s 6.4
14
Thermal Shock Resistance, points 33 to 39
17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0.2 to 0.25
0 to 0.18
Chromium (Cr), % 11 to 12.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 81.9 to 85.8
96.2 to 98.9
Manganese (Mn), % 0.5 to 1.0
1.1 to 1.7
Molybdenum (Mo), % 0.9 to 1.3
0 to 0.080
Nickel (Ni), % 0.5 to 1.0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
0 to 0.1